Wave functions on periodic lattices are commonly described by Bloch band theory. Besides Abelian Bloch states labeled by a momentum vector, hyperbolic lattices support non-Abelian Bloch states that have so far eluded analytical treatments. By adapting the solid-state-physics notions of supercells and zone folding, we devise a method for the systematic construction of non-Abelian Bloch states. The method applies Abelian band theory to sequences of supercells, recursively built as symmetric aggregates of smaller cells, and enables a rapidly convergent computation of bulk spectra and eigenstates for both gapless and gapped tight-binding models. Our supercell method provides an efficient means of approximating the thermodynamic limit and marks a pivotal step toward a complete band-theoretic characterization of hyperbolic lattices.